“I am putting myself to the fullest possible use, which is all I think any conscious entity can ever hope to do.” ~ HAL 9000
“If you want to make the world a better place take a look at yourself and then make a change.” ~ MJ.
First and foremost with this blog i trust everyone is safe. The world is in an interesting place, space, and time both physically and dare i say collectively – mentally.
Introduction
This past week we celebrated Earth Day. i believe i heard it was the 50th year of Earth Day. While I applaud the efforts and longevity for a day we should have Earth Day every day. Further just “thoughting” about or tweeting about Earth Day – while it may wake up your posterior lobe of the pituitary gland and secret some oxytocin – creating the warm fuzzies for you it really doesn’t create an action for furthering Earth Day. (much like typing /giphy YAY! In Slack).
As such, i decided to embark on a multipart blog that i have been “thinking” about what i call an Ecological Computing System. Then the more i thought about it why stop at Ecology? We are able to model and connect essentially anything, we now have models for the brain that while are coarse-grained can account for gross behaviors, we have tons of data on buying habits and advertisement data and everything is highly mobile and distributed. Machine learning which can optimize, classify and predict with extremely high dimensionality is no longer an academic exercise.
Thus, i suppose taking it one step further from ecology and what would differentiate it from other efforts is that <IT> would actually attempt to provide a compute framework that would compute The Human Condition. I am going to call this effort Project Noumena. Kant the eminent thinker of 18th century Germany defined Noumena as a thing as it is in itself, as distinct from a thing as it is knowable by the senses through phenomenal attributes and proposed that the experience was a product of the mind.
My impetus for this are manifold:
- i love the air, water, trees, and animals,
- i am an active water person,
- i want my children’s children’s children to know the wonder of staring at the azure skies, azure oceans and purple mountains,
- Maybe technology will assist us in saving us from The Human Condition.
Timing
i have waited probably 15+ years to write about this ideation of such a system mainly due to the technological considerations were nowhere near where they needed to be and to be extremely transparent no one seemed to really think it was an issue until recently. The pandemic seems to have been a global wakeup call that in fact, Humanity is fragile. There are shortages of resources in the most advanced societies. Further due to the recent awareness that the pollution levels appear (reported) to be subsiding as a function in the reduction of humans’ daily involvement within the environment. To that point over the past two years, there appears to be an uptake of awareness in how plastics are destroying our oceans. This has a coupling effect that with the pandemic and other environmental concerns there could potentially be a food shortage due to these highly nonlinear effects. This uptake in awareness has mainly been due to the usage of technology of mobile computing and social media which in and of itself probably couldn’t have existed without plastics and massive natural resource consumption. So i trust the irony is not lost there.
From a technical perspective, Open source and Open Source Systems have become the way that software is developed. For those that have not read The Cathedral and The Bazaar and In The Beginning Was The Command Line i urge you to do so it will change your perspective.
We are no longer hampered by the concept of scale in computing. We can also create a system that behaves at scale with only but a few human resources. You can do a lot with few humans now which has been the promise of computing.
Distributed computing methods are now coming to fruition. We no longer think in terms of a monolithic operating system or in place machine learning. Edge computing and fiber networks are accelerating this at an astonishing rate. Transactions now dictate trust. While we will revisit this during the design chapters of the blog I’ll go out on a limb here and say these three features are cogent to distributed system processing (and possibly the future of computing at scale).
- Incentive models
- Consensus models
- Protocol models
We will definitely be going into the deeper psychological, mathematical, and technical aspects of these items.
Some additional points of interest and on timing. Microsoft recently released press about a Planetary Computer and announced the position of Chief Ecology Officer. While i do not consider Project Nuomena to be of the same system type there could be similarities on the ecological aspects which just like in open source creates a more resilient base to work.
The top market cap companies are all information theoretic-based corporations. Humans that know the science, technology, mathematics and liberal arts are key to their success. All of these companies are woven and interwoven into the very fabric of our physical and psychological lives.
Thus it is with the confluence of these items i believe the time is now to embark on this design journey. We must address the Environment, Societal factors and the model of governance.
A mentor once told me one time in a land far away: “Timing is everything as long as you can execute.” Ergo Timing and Execution Is Everything.
Goals
It is my goal that i can create a design and hopefully, an implementation that is utilizing computational means to truly assist in building models and sampling the world where we can adhere to goals in making small but meaningful changes that can be used within what i am calling the 3R’s: recycle, redact, reuse. Further, i hope with the proper incentive models in place that are dynamic it has a mentality positive feedback effect. Just as in complexity theory a small change – a butterfly wings – can create hurricanes – in this case positive effect.
Here is my overall plan. i’m not big on the process or gant charts. I’ll be putting all of this in a README.md as well. I may ensconce the feature sets etc into a trello or some other tracking mechanism to keep me focused – WebSphere feel free to make recommendations in the comments section:
Action Items:
- Create Comparative Models
- Create Coarse-Grained Attributes
- Identify underlying technical attributes
- Attempt to coalesce into an architecture
- Start writing code for the above.
Preamble
Humanity has come to expect growth as a material extension of human behavior. We equate growth with progress. In fact, we use the term exponential growth as it is indefinitely positive. In most cases for a fixed time interval, this means a doubling of the relevant system variable or variables. We speak of growth as a function of gross national production. In most cases, exponential growth is treacherous where there are no known or perceived limits. It appears that humanity has only recently become aware that we do not have infinite resources. Psychologically there is a clash between the exponential growth and the psychological or physical limit. The only significance is the relevant (usually local) limit. How does it affect me, us, and them? This can be seen throughput most game theory practices – dominant choice. The pattern of growth is not the surprise it is the collision of the awareness of the limit to the ever-increasing growth function is the surprise.
One must stop and ask:
Q: Are progress (and capacity) and the ever-increasing function a positive and how does it relate to 2nd law of thermodynamics aka Entropy? Must it always expand?
We are starting to see that our world can exert dormant forces that within our life can greatly affect our well being. When we approach the actual or perceived limit the forces which are usually negative begin to gain strength.
So given these aspects of why i’ll turn now to start the discussion. If we do not understand history we cannot predict the future by inventing it or in most cases re-inventing it as it where.
I want to start off the history by referencing several books that i have been reading and re-reading on subjects of modeling the world, complexity, and models for collapse throughout this multipart blog. We will be addressing issues concerning complex dynamics as are manifested with respect to attributes model types, economics, equality, and mental concerns.
These core references are located at the end of the blog under references. They are all hot-linked. Please go scroll and check them out. i’ll still be here. i’ll wait.
Checked them out? i know a long list.
As you can see the core is rather extensive due to the nature of the subject matter. The top three books are the main ones that have been the prime movers and guides of my thinking. These three books i will refer to as The Core Trilogy:
The Collapse of Complex Societies
As i mentioned i have been deeply thinking about all aspects of this system for quite some time. I will be mentioning several other texts and references along the continuum of creation of this design.
We will start by referencing the first book: World Dynamics by J.W. Forrestor. World Dynamics came out of several meetings of the Rome Club a 75 person invite-only club founded by the President of Fiat. The club set forth the following attributes for a dynamic model that would attempt to predict the future of the world:
- Population Growth
- Capital Investment
- Geographical Space
- Natural Resources
- Pollution
- Food Production
The output of this design was codified in a computer program called World3. It has been running since the 1970s what was then termed a golden age of society in many cases. All of these variables have been growing at an exponential rate. Here we see the model with the various attributes in action. There have been several criticisms of the models and also analysis which i will go into in further blogs. However, in some cases, the variants have been eerily accurate. The following plot is an output of the World3 model:
Issues Raised By World3 and World Dynamics
The issues raised by World3 and within the book World Dynamics are the following:
- There is a strong undercurrent that technology might not be the savior of humankind
- Industrialism (including medicine and public health) may be a more disturbing force than the population.
- We may face extreme psychological stress and pressures from a four-pronged dilemma via suppression of the modern industrial world.
- We may be living in a “golden age” despite a widely acknowledged feeling of malaise.
- Exhtortions and programs directed at population control may be self-defeating. Population control, if it works, would yield excesses thereby allowing further procreation.
- Pollution and Population seem to oscillate whereas the high standard of living increases the production of food and material goods which outrun the population. Agriculture as it hits a space limit and as natural resources reach a pollution limit then the quality of life falls in equalizing population.
- There may be no realistic hope of underdeveloped countries reaching the same standard and quality of life as developed countries. However, with the decline in developed countries, the underdeveloped countries may be equalized by that decline.
- A society with a high level of industrialization may be unsustainable.
- From a long term 100 years hence it may be unwise for underdeveloped countries to seek the same levels of industrialization. The present underdeveloped nations may be in better conditions for surviving the forthcoming pressures. These underdeveloped countries would suffer far less in a world collapse.
Fuzzy Human – Fuzzy Model
The human mind is amazing at identifying structures of complex situations. However, our experiences train us poorly for estimating the dynamic consequences of said complexities. Our mind is also not very accurate at estimating ad hoc parts of the complexities and the variational outcomes.
One of the problems with models is well it is just a model The subject-observer reference could shift and the context shifts thereof. This dynamic aspect needs to be built into the models.
Also while we would like to think that our mental model is accurate it is really quite fuzzy and even irrational in most cases. Also attempting to generalize everything into a singular model parameter is exceedingly difficult. It is very difficult to transfer one industry model onto another.
In general parameterization of most of these systems is based on some perceptual model we have rationally or irrationally invented.
When these models were created there was the consideration of modeling social mechanics of good-evil, greed – altruism, fears, goals, habits, prejudice, homeostasis, and other so-called human characteristics. We are now at a level of science where we can actually model the synaptic impulse and other aspects that come with these perceptions and emotions.
There is a common cross-cutting construct in most complex models within this text that consists of and mainly concerned with the concept of feedback and how the non-linear relationships of these modeled systems feedback into one another. System-wide thinking permeates the text itself. On a related note from the 1940’s of which Dr Norbert Weiner and others such as Claude Shannon worked on ballistic tracking systems and coupled feedback both in a cybernetic and information-theoretic fashion of which he attributed the concept of feedback as one of the most fundamental operations in information theory. This led to the extremely famous Weiner Estimation Filters. Also, side note: Dr Weiner was a self-styled pacifist proving you can hold two very opposing views in the same instance whilst being successful at executing both ideals.
Given that basic function of feedback, lets look at the principle structures. Essentially the model states there will be levels and rates. Rates are flows that cause levels to change. Levels can accumulate the net level. Either addition or subtraction to that level. The various system levels can in aggregate describe the system state at any given time . Levels existing in all subsystems of existence. These subsystems as you will see include but are not limited to financial, psychological, biological, and economic. The reason that i say not limited to because i also believe there are some yet to be identified subsystems at the quantum level. The differential or rate of flow is controlled by one or more systems. All systems that have some Spatio-temporal manifestation can be represented by using the two variables levels and rates. Thus with respect to the spatial or temporal variables, we can have a dynamic model.
The below picture is the model that grew out of interest from the initial meetings of the Club of Rome. The inaugural meeting which was the impetus for the model was held in Bern, Switzerland on June 29, 1970. Each of the levels presents a variable in the previously mentioned major structures. System levels appear as right triangles. Each level is increased or decreased by the respective flow. As previously mentioned on feedback any closed path through the diagram is a feedback loop. Some of the closed loops given certain information-theoretic attributes be positive feedback loops that generate growth and others that seek equilibrium will be negative feedback loops. If you notice something about the diagram it essentially is a birth and death loop. The population loop if you will. For the benefit of modeling, there are really only two major variables that affect the population. Birth Rate (BR) and Death Rate (DR). They represent the total aggregate rate at which the population is being increased or decreased. The system has coefficients that can initialize them to normal rates. For example, in 1970 BRN is taken as 0.0885 (88.5 per thousand) which is then multiplied by population to determine BR. DRN by the same measure is the outflow or reduction. In 1970 it was 9.5% or 0.095. The difference is the net and called normal rates. The normale rates correspond to a physical normal world. When there are normal levels of food, material standard of living, crowding, and pollution. The influencers are then multipliers that increase or decrease the normal rates.
As a caveat, there have been some detractors of this model. To be sure it is very coarse-grained however while i haven’t seen the latest runs or outputs it is my understanding as i said the current outputs are close. The criticisms come in the shape of “Well its just modeling everything as a . I will be using this concept and map if you will as the basis for Noumena. The concepts and values as i evolve the system will vary greatly from the World3 model but i believe starting with a minimum viable product is essential here as i said humans are not very good at predicting all of the various outcomes in high dimensional space. We can asses situations very quickly but probably outcomes no so much. Next up we will be delving into the loops deeper and getting loopier.
So this is the first draft if you will as everything nowadays can be considered an evolutionary draft.
Then again isn’t really all of this just The_Inifinite_Human_Do_Loop?
until then,
#iwishyouwater
tctjr
References:
(Note: They are all hotlinked)
The Collapse of Complex Societies
Thinking In Systems Donella Meadows
Designing Distributed Systems Brendan Burns
Introduction to Distributed Algorithms
A Pragmatic Introduction to Secure Multi-Party Computation
Reliable Secure Distributed Programming
Dynamic General Equilibrium Modeling
Advanced Information Systems Engineering
Introduction to Dynamic Systems Modeling
Technological Revolutions and Financial Capital
The Structure of Scientific Revolutions
Agent-Based Modelling In Economics
Blog Muzak: Brain and Roger Eno: Mixing Colors
Whoa! And we should definitely talk!
Love The Lorax….dude! Seriously, I am looking forward to blog2.
Hey Ted, Great post. As a product (and reject) of soviet central planning, I have always been a bit suspicious of broad societal systems thinking in that I believe the most of the nastiest bits of the human experience happen in the blind spots of our imagination, with that as a disclaimer, I have been increasingly troubled in the miss-alignment of incentives and our long term happiness / success. I love that you start this post quoting Kant in that the best planned systems still have to function within the lanes of human nature – and that is much more the realm of philosophy than economics or technology. Therefore, it’s impossible to envision meaningful and productive changes in the structure of our future without devoting a good bit of space to understanding how our nature might work to hire technology to protect our future. It is also impossible to solve a problem without knowing what the problem is, the idea of focusing on a model(s) sounds like a perfect step.
hi misha –
apologies for the tardy reply. i truly appreciate the insightful commentary and i appreciate in other insights you may have along this journey.